
Advanced Concepts in Software Engineering

1. Information about the program

1.1 Higher education institution University POLITEHNICA of Bucharest

1.2 Faculty Faculty of Engineering in Foreign Languages

1.3 Department Department of Engineering in Foreign Languages

1.4 Field of study Computers and Information Technology

1.5 Study cycle Master

1.6 Program / Qualification Software Engineering

2. Data about the subject

2.1 Name of subject Advanced Concepts in Software Engineering

2.2 Course holder

2.3 Seminar holder

2.4 Laboratory/project holder

2.5 Year of study 1 2.6 Semester 1 2.7 Evaluation type E 2.8 Subject type DPA/DO

3. Estimated time (hours per semester) of didactic activities

3.1 Number of hours per week 3 course hours 2 seminar laboratory 1

3.2. Number of hours per semester 42 course hours 28 seminar laboratory 14

3.3.Distribution of spend time: h.

Study of textbooks, bibliography and course notes 24

Supplementary study in library, on electronic platforms, on the fieldwork 12

Preparation of seminars/laboratories, home assignments, papers, portfolios, essays 20

Tutoring 5

Examinations 5

Other activities

3.4 Total hours of individual study 66

3.5 Total hours per semester 108

3.6 Number of credits 4

4. Preconditions (where relevant)

4.1 curriculum- related • Introduction to Information Technology

• Programming Languages

• Data Structures and Algorithms

4.2 competence - related • Programing skills

5. Facilities and equipment (where relevant)

5.1 for the course • Overhead Projector

5.2 for the course seminar •

5.3 for the laboratory/project • 20 PC

6. Specific competences acquired

P
ro

fe
ss

io
n
al

 c
o
m

p
et

en
ce

s • Design appropriate software solutions, using responsible engineering approaches and

applying theories and models that provide a basis for software design

• Work effectively in interdisciplinary contexts, in particular to bridge the gap between

computing technology and the clients business and to interpret and respect extra-technical

constraints deriving from the business organization

• Understand and be able to use specific tools, components, and frameworks and also abstract

elements such as algorithms and architectures

• Organize and lead development teams, including team-building and negotiation

• Serve as an agent of change for introducing new technology

7. Course objectives (as resulting from the grid of specific competences)

7.1 Subject general goal • The aim of this course is to introduce the issues, basic and

advanced principles of software engineering. The objectives are to

develop a framework into which more detailed material regarding

specific aspects of the software engineering process techniques

and issues can fit, including requirements, verification, testing,

validation and quality processes.

7.2 Specific objectives • Introduction of students to main notions of Software Engineering

• Develop the competencies to manage the software development

process

• Develop the competencies to develop documentation, work in

team , develop a specific product in a sound software engineering

manner

8. Content
Course Teaching methods Observations

Software Processes

1.1. Software process models

1.2. Process iteration

1.3. Process activities

1.4. Computer-aided software

engineering

1.5. CMM approach

Lecturing

Requirements Engineering Processes

2.1. Feasibility studies

2.2. Requirements elicitation and

analysis

2.3. Requirements validation

2.4. CASE tools for requirements

management

2.5. Critical system specification

2.6. Formal specification

Lecturing

Verification and Validation

3.1. Planning verification and validation

3.2. Software inspections

3.3. Automated static analysis

3.4. System and component testing

3.5. Test case design

3.6. CASE tools for testing automation

Lecturing

Configuration Management

4.1. Configuration management

planning

4.2. Change management

4.3. Version and release management

4.4. CASE tools for configuration
management

Lecturing

Software Cost Estimation

5.1. Software productivity

5.2. Estimation techniques

5.3. Project duration and staffing

Lecturing

Quality Management

6.1. Process and product quality

6.2. Quality assurance and standards

6.3. Quality planning

6.4. Software measurements and metrics

Lecturing

Bibliography

• Sommerville, I, “Software Engineering 7”, 7th Ed., Addison Wesley, 2004

• Hughes, B and Cotterell, M, “Software Project Management”, 3rd Ed, McGraw Hill, 2002

• Humphrey, W, “Managing the Software Process”, SET Series in Software Engineering, Addison
Wesley 1990

• Boehm, B, “Software Engineering Economics”, Prentice Hall, 1981

• Kan, Stephen “Metrics and Models in Software Quality Engineering” 2nd Ed, Addison Wesley
Professional, 2002

• Blanchard, B. S and Fabrycky W.J, , Systems Engineering and Analysis, Prentice Hall, NJ, 1997

• Smith, C.U.: Performance Engineering of Software Systems. Addison Wesley, 1990

8.3 Laboratory

Requirements specification and
management

Laboratory Teaching

Architectural design Laboratory Teaching

Software design Laboratory Teaching

Software Testing Laboratory Teaching

Configuration Management Laboratory Teaching

Software Validation Laboratory Teaching

A comprehensive software application is
studied and developed with automated
tools

Project Tutoring

Bibliography

• Hetzel, B, “The Complete Guide To Software Testing”, 2nd Ed, QED Information Sciences, Inc, 1988

• SEI, SE-CMM, The Systems Engineering CMM, Architecture papers

9. Subject’s relevance to the epistemic community, professional associations and representative

employers in fields significant for the program

10. Assessment

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Weight in

final grade

10.4 Course
Course Presence and Activities Presence and Activities Evaluation 10%

Final Examinations Written Exam 40%

10.5 Seminar

10.6
Laboratory/Project

Laboratory Assignment Assignments Correction 20%

Project Project Evaluation 30%

10.7 Minimal standard of performance

• Minimum 50% of the marks from Laboratory/Project and Course Activities part (3 points out of 6)
• Minimum of 50 % from final examination (2 points out of 4)

• The software engineers adopt a systemstic and organised approach to their work, as this is often the
most effective way to produce high-quality software. In this course the students are educated in
advanced software engineering concepts that covers the entire development chain, from the business
management perspective to the technical management and the development perspectives.

Game and Interactive Simulation Systems

1. Information about the program

1.1 Higher education institution University POLITEHNICA of Bucharest

1.2 Faculty Faculty of Engineering in Foreign Languages

1.3 Department Department of Engineering in Foreign Languages

1.4 Field of study Computers and Information Technology

1.5 Study cycle Master

1.6 Program / Qualification Software Engineering

2. Data about the subject

2.1 Name of subject Game and Interactive Simulation Systems

2.2 Course holder

2.3 Seminar holder

2.4 Laboratory/project holder

2.5 Year of study 1 2.6 Semester 1 2.7 Evaluation type E 2.8 Subject type DAP/DO

3. Estimated time (hours per semester) of didactic activities

3.1 Number of hours per week 3 course hours 1 seminar laboratory 2

3.2. Number of hours per semester 42 course hours 14 seminar laboratory 28

3.3.Distribution of spend time: h.

Study of textbooks, bibliography and course notes 14

Supplementary study in library, on electronic platforms, on the fieldwork

Preparation of seminars/laboratories, home assignments, papers, portfolios, essays 42

Tutoring

Examinations 4

Other activities

3.4 Total hours of individual study 60

3.5 Total hours per semester 102

3.6 Number of credits 4

4. Preconditions (where relevant)

4.1 curriculum- related •

4.2 competence - related • Programming languages

5. Facilities and equipment (where relevant)

5.1 for the course • Projector

5.2 for the course seminar •

5.3 for the laboratory/project • Computers with performant graphic boards, human-

computer interfaces, 3D glasses, VR devices

6. Specific competences acquired

P
ro

fe
ss

io
n

al
 c

o
m

p
et

en
ce

s

• Programming languages awareness for effective programming, including code, components and

services creation, and integration of multiple subsystems

T
ra

n
sv

er
sa

l
co

m
p

et
en

ce
s • Understand and be able to use specific tools, components, and frameworks and also abstract elements

such as algorithms and architectures

• Organize and lead development teams, including team-building and negotiation

• Serve as an agent of change for introducing new technology

7. Course objectives (as resulting from the grid of specific competences)

7.1 Subject general goal • The course teaches students knowledge and skills necessary to

develop games, interactive and Virtual Reality applications.

7.2 Specific objectives • The course aims to introduce:

-Familiarity with basic techniques for game design (sprites, 3D

models, interactivity, reaction)
-Usage of GameMaker Studio and Unity 5.x

-Create 3D and VR models
- Usage of HCI.

8. Content

8.1 Course Teaching methods Observations

Introduction, History, Classification. slides

GameMaker Studio, GML slides

Unity 5.x Interface slides

Unity 5.x 2D Applications slides

Unity 5.x 3D Applications slides

Human-Computer Interaction slides

Virtual Reality slides

Bibliography

1. Mr Ben G Tyers, Practical GameMaker: Studio: Language Projects, Apress, 2016

2. Nathan Auckett, GameMaker Essentials, Packt Publishing, 2015

3. Francesco Sapio, Getting Started with Unity 5.x 2D Game Development, 2017,

4. Tommaso Lintrami, Unity 2017 Game Development Essentials, Packt Publishing, 2017

5. Joseph Hocking. Unity in Action- Multiplatform Game Development in C#, Manning Publications, 2015

6. Penny de Byl, Holistic Game Development with Unity, CRC Press, 2017

7. Alan Thorn, Mastering Unity 5.x, Packt Publishing, 2017
8. Jonathan Linowes, Unity Virtual Reality Projects, , Packt Publishing, 2015

8.2 Seminar Teaching methods Observations

8.3 Laboratory

GameMaker Studio Interface, sprites, editor Laboratory work, Coding exercises

GameMaker Studio – drag and drop, Pong
Game

Laboratory work, Coding exercises

GameMaker Studio – Game Maker Language Laboratory work, Coding exercises

GameMaker Studio Application with sound
and score

Laboratory work, Coding exercises

Unity 5.x Interface and entities Laboratory work, Coding exercises

Unity 5.x 2D Applications, sprites, C#
scripting

Laboratory work, Coding exercises

Unity 5.x 3D navigation, shooting Laboratory work, Coding exercises

Unity 5.x Assets Laboratory work, Coding exercises

Unity 5.x Character Animation Laboratory work, Coding exercises

Unity 5.x Environment, sound Laboratory work, Coding exercises

Unity 5.x Leap Motion Interface Coding exercises

Unity 5.x Virtual Reality Coding exercises

Unity 5.x Application Project development, Help, Hints Students are working for the
project application

Unity 5.x Application Project development, Help, Hints Students are working for the
project application

Bibliography

1. Mr Ben G Tyers, Practical GameMaker: Studio: Language Projects, Apress, 2016

2. Nathan Auckett, GameMaker Essentials, Packt Publishing, 2015

3. Francesco Sapio, Getting Started with Unity 5.x 2D Game Development, 2017,

4. Tommaso Lintrami, Unity 2017 Game Development Essentials, Packt Publishing, 2017

5. Joseph Hocking. Unity in Action- Multiplatform Game Development in C#, Manning Publications, 2015

6. Penny de Byl, Holistic Game Development with Unity, CRC Press, 2017

7. Alan Thorn, Mastering Unity 5.x, Packt Publishing, 2017

8. Jonathan Linowes, Unity Virtual Reality Projects, , Packt Publishing, 2015

9. https://www.yoyogames.com/learn
10. https://unity3d.com/learn

9. Subject’s relevance to the epistemic community, professional associations and representative

employers in fields significant for the program

http://www.yoyogames.com/learn

10. Assessment

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Weight in

final grade

10.4 Course

10.5 Seminar

10.6

Laboratory/Project

Presence Course+Laboratory Presence list 10%

Homework 1 GameMaker Homework assessment (Moodle) 25%

Homework 2 3D Application in

Unity 5.x

Homework assessment (Moodle) 25%

Project – Game or Simulation Defending the project. Printed sample 40%

10.7 Minimal standard of performance

50% of points

• The subject introduces games and simulations development, together with problems related to human

computer interfaces and real time processing. The games industry is young, but it is well develop in

Romania, a leading provider of workforce in gaming industry, with employers like Ubisoft, Electronic Arts

and many others. The humankind enters these years the world of full VR and experience in this field

constitutes a big advantage not only on the labor market for game developers, but for software in general.

Programming Paradigms

1. Information about the program

1.1 Higher education institution University POLITEHNICA of Bucharest

1.2 Faculty Faculty of Engineering in Foreign Languages

1.3 Department Department of Engineering in Foreign Languages

1.4 Field of study Computers and Information Technology

1.5 Study cycle Master

1.6 Program / Qualification Software Engineering

2. Data about the subject

2.1 Name of subject Programming Paradigms

2.2 Course holder

2.3 Seminar holder

2.4 Laboratory/project holder

2.5 Year of study 1 2.6 Semester 1 2.7 Evaluation type V 2.8 Subject type DO

3. Estimated time (hours per semester) of didactic activities

3.1 Number of hours per week 4 course hours 2 project 1 laboratory 1

3.2. Number of hours per semester 56 course hours 28 project 14 laboratory 14

3.3.Distribution of spend time: h.

Study of textbooks, bibliography and course notes 14

Supplementary study in library, on electronic platforms, on the fieldwork

Preparation of seminars/laboratories, home assignments, papers, portfolios, essays 10

Tutoring 2

Examinations 2

Other activities

3.4 Total hours of individual study 28

3.5 Total hours per semester 84

3.6 Number of credits 4

4. Preconditions (where relevant)

4.1 curriculum- related • Programming Languages

4.2 competence - related •

5. Facilities and equipment (where relevant)

5.1 for the course • Projector, blackboard/whiteboard

5.2 for the course seminar •

5.3 for the laboratory/project • Laboratory with computers

• Internet connection

• Development boards with sensors and communication

 capabilities

6. Specific competences acquired

P
ro

fe
ss

io
n

al
 c

o
m

p
et

en
ce

s
Sa cunoasca limbajele de programare pentru a fi efectiv si eficient in programare, inclusiv in crearea de codice, componente si servicii, si
integrarea de numeroase subsisteme

Know programming languages in order to be effective and efficient in programming, including in creading codices, components, services
and in integrating numerous subsystems

T
ra

n
sv

er
sa

l
co

m
p

et
en

ce
s Organize software production processes using specific tools, components and services as well as abstract elements such as

software algorithms and architectures.

7. Course objectives (as resulting from the grid of specific competences)

7.1 Subject general goal • Understand the key elements and differences between

programming languages based on syntax and semantics

7.2 Specific objectives • Learn the imperative programming paradigm

• Learn the object oriented programming paradigm

• Learn the functional programming paradigm

• Learn the declarative programming paradigm

8. Content

8.1 Course Teaching methods Observations

Introduction to programming paradigms Blackboard, projector,

Moodle

2

Abstract machines 2

Memory management 2

Data abstraction 2

Control abstraction 2

Imperative programming - Java 4

Object Oriented programming– Java 4

Functional programming– Scala 6

Declarative programming- Prolog 4

Bibliography

1. C. Horstmann, G. Cornell, “Core Java 2”

2. J. Bloch, C. Persuati, “Effective Java”

3. S. McConnell, “Code Complete”

4. M. Gabbrielli, S. Martini, “Programming Languages: Principles and Paradigms”
A.V. Aho “Compilers: Principles, Techniques and Tools”

8.2 Project Teaching methods Observations

Implement a complex software project

that uses three programming

paradigms (imperative, functional,
declarative)

Moodle, individual work at

computer

8.3 Laboratory

Java introduction 2 hours

Variables 2 hours

Methods 2 hours

Object Oriented Programming 4 hours

Scala introduction 2 hours

Recursivity in Scala 4 hours

Generic types in Scala 2 hours

Lists, sets in Scala 2 hours

Pattern matching in Scala 2 hours

Prolog introduction 2 hours

Inferences in Prolog 2 hours

Recursivity, lists in Prolog 2 hours

Bibliography
1. C. Horstmann, G. Cornell, “Core Java 2”

2. J. Bloch, C. Persuati, “Effective Java”

3. S. McConnell, “Code Complete”

4. M. Gabbrielli, S. Martini, “Programming Languages: Principles and Paradigms”

A.V. Aho “Compilers: Principles, Techniques and Tools”

•

9. Subject’s relevance to the epistemic community, professional associations and representative

employers in fields significant for the program

10. Assessment

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Weight in

final grade

10.4 Course
Knowing the theory Written exam 40

10.5 Project

Implement a software project that

uses the three paradigms

Present in class 30

10.6
Laboratory/Project

Attendance + homework + activity Oral examination 30

10.7 Minimal standard of performance

• Achieve over 50% in score at the final exam
• Present the project before the exam

• The course and laboratory were prepared after extensive study of similar programs offered by prestigious

universities and adapted to be integrated in the current study program.

Formal Models in Software Engineering

1. Information about the program

1.1 Higher education institution University POLITEHNICA of Bucharest

1.2 Faculty Faculty of Engineering in Foreign Languages

1.3 Department Department of Engineering in Foreign Languages

1.4 Field of study Computers and Information Technology

1.5 Study cycle Master

1.6 Program / Qualification Software Engineering

2. Data about the subject

2.1 Name of subject Formal Models in Software Engineering

2.2 Course holder

2.3 Seminar holder

2.4 Laboratory/project holder

2.5 Year of study 3 2.6 Semester 1 2.7 Evaluation type C 2.8 Subject type DPA/DO

3. Estimated time (hours per semester) of didactic activities

3.1 Number of hours per week 3 course hours 1 seminar 1 laboratory 1

3.2. Number of hours per semester 42 course hours 14 seminar 14 laboratory 14

3.3.Distribution of spend time: h.

Study of textbooks, bibliography and course notes 20

Supplementary study in library, on electronic platforms, on the fieldwork 10

Preparation of seminars/laboratories, home assignments, papers, portfolios, essays 10

Tutoring 3

Examinations 3

Other activities

3.4 Total hours of individual study 66

3.5 Total hours per semester 108

3.6 Number of credits 4

4. Preconditions (where relevant)

4.1 curriculum- related • Introduction to Information Technology

• Data Structures and Algorithms

4.2 competence - related •

5. Facilities and equipment (where relevant)

5.1 for the course • Overhead Projector

5.2 for the course seminar •

5.3 for the laboratory/project • 20 PC

6. Specific competences acquired

P
ro

fe
ss

io
n

al
 c

o
m

p
et

en
ce

s • Apply design and development methods and techniques as appropriate to realize solutions along the
whole life-cycle of the software product

• Understand and be able to use specific tools, components, and frameworks and also abstract

elements such as algorithms and architectures

• Organize and lead development teams, including team-building and negotiation

• Serve as an agent of change for introducing new technology

7. Course objectives (as resulting from the grid of specific competences)

7.1 Subject general goal • Scientific foundations for software engineering depend on
the use of precise, abstract models for characterizing and
reasoning about properties of software systems. This
course considers many of the standard models for
representing sequential and concurrent systems, such as
grammars, automata, state machines, formal models in
Spin and Promela. It shows how different logics can be
used to specify properties of software systems, such as
functional correctness, deadlock freedom, and internal
consistency. Concepts such as composition mechanisms,
abstraction relations, invariants, non-determinism, inductive
definitions, operational and denotational descriptions are
recurrent themes throughout the course.

7.2 Specific objectives • How to use formal specification methods in software

 development

• Formal reasoning on program correctness

• Modeling and formal specification of software activities .

8. Content

Course Teaching methods Observations

Foundations

1.1. What's a formal model?

1.2. Logic and Proof Techniques

1.3. Sets, Relations, Maps, Functions

1.4. Graphs

1.5. Abstract Data Types

Lecturing

Languages

2.1. Formal Systems

2.2. Grammars and Languages

2.3. Semantics Specifications

2.4. Automata and Languages

Lecturing

State Machine

3.1. Basic Concepts

3.2. Variations of State Machines

Lecturing

Models of Computing Systems

4.1. Introduction to Spin Promela

4.2. Formal Modelin in Promela

4.3. Verification and Validation in

Spin/Promela

4.4. The Vienna Development Method

4.5. Operational vs. denotational
semantics in VDM

Lecturing

Bibliography

• Peter Linz, An Introduction to Formal Languages and Automata, 2006

• J. Glenn Brookshear, Theory of Computation: Formal Languages, Automata, and ComplexityJ, 1989

• John E. Hopcroft and Rajeev Motwani, Introduction to Automata Theory, Languages, and
Computation, 2006

• Nagpal, Formal Languages and Automata Theory, 2012

8.2 Seminar Teaching Method Observation

Deterministic and Non-Deterministic Finite Seminar work

Automata

Regular expression algorithms Seminar work

Grammars and Derivations Seminar work

8.3 Laboratory

Introduction to Promela Laboratory Work

Introduction to Spin feature Laboratory Work

Elaboration of a complex Formal Model in
Promela

Laboratory Work

Simulation and Verification in Spin Laboratory Work

Bibliography

• Elaine A. Rich, Automata, Computability and Complexity: Theory and ApplicationsSep 28, 2007

• John E. Hopcroft and Rajeev Motwani, Introduction to Automata Theory, Languages, and
Computation, 2006

• “Programare Functionala, O perspectiva pragmatica”, C. Giumale, Editura tehnica, 1997

• “Z An Itroduction to Formal Methods”, A. Diller, John Wiley & Sons, 1994

• “Systematic Software Development using VDM”, C. B. Jones, Prentice Hall 1990

• “Concurrency: State Models and Java Programs”, by Magee and Kramer [MK99]. .

• "Concepts and Notations for Concurrent Programming," Andrews and Schneider.

Computing Surveys, Vol. 15, No. 1, March 1983.

• "Formal Methods: State of the Art and Future Directions", ACM Computing Surveys, Vol.

28, No. 4, December 1996, pp. 626-643. Available as CMU-CS-96-178.

• "Statecharts: a visual formalism for complex systems." D. Harel. Science of Computer

Programming, 8:231-274, 1987.

• High-level Petri Nets: Theory and Application. K. Jensen and G. Rozenberg (eds.)

Springer-Verlag, 1991.

• Concurrency: State Models and Java Programs, J. Magee and J. Kramer. Wiley, 1999.

• "Petri Nets." J. L. Peterson. ACM Computing Surveys, Sept 1977.

• The Z Notation: A Reference Manual, J. M. Spivey. Prentice-Hall International, 1989.

• Using Z: Specification, Refinement, and Proof, J. Woodcock and J. Davies. Prentice Hall

1996. Available from http://www.usingz.com/

9. Subject’s relevance to the epistemic community, professional associations and representative

employers in fields significant for the program

10. Assessment

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Weight in

final grade

10.4 Course
Course Presence and Activities Presence and Activities Evaluation 10%

Final Examinations Written Exam 40%

10.5 Seminar

Seminary Assignments Assignments Correction 25%

10.6 Laboratory Assignment Assignments Correction 10%

Laboratory/Project Project Project Evaluation 15%

10.7 Minimal standard of performance

• Minimum 50% of the marks from Seminaries Assignments and Course Activities part (3 points out of 6)
• Minimum of 50 % from final examination (2 points out of 4)

• Formal Modeling is a building block for checking the correctness of a software system – especially its
architecture. Formal modeling showed its usefulness in protocol algorithms used in a distributed
environment.

http://www.usingz.com/

Technologies for Big Data Analysis

1. Information about the program

1.1 Higher education institution University POLITEHNICA of Bucharest

1.2 Faculty Faculty of Engineering in Foreign Languages

1.3 Department Department of Engineering in Foreign Languages

1.4 Field of study Computers and Information Technology

1.5 Study cycle Master

1.6 Program / Qualification Software Engineering

2. Data about the subject

2.1 Name of subject Technologies for Big Data Analysis

2.2 Course holder

2.3 Seminar holder

2.4 Laboratory/project holder

2.5 Year of study 2014 2.6 Semester I 2.7 Evaluation type E 2.8 Subject type DAP/DO

3. Estimated time (hours per semester) of didactic activities

3.1 Number of hours per week 3 course hours 2 seminar laboratory 1

3.2. Number of hours per semester 52 course hours 28 seminar laboratory 14

3.3.Distribution of spend time: h.

Study of textbooks, bibliography and course notes 24

Supplementary study in library, on electronic platforms, on the fieldwork 14

Preparation of seminars/laboratories, home assignments, papers, portfolios, essays 14

Tutoring 4

Examinations 10

Other activities

3.4 Total hours of individual study 66

3.5 Total hours per semester 108

3.6 Number of credits 4

4. Preconditions (where relevant)

4.1 curriculum- related • Java programming, C++, Python, SQL

4.2 competence - related • Architecture of Enterprise Information Systems, Business Intelligence

5. Facilities and equipment (where relevant)

5.1 for the course • Overhead projector, internet connection

5.2 for the course seminar • Workstations min 8 GB RAM

5.3 for the laboratory/project • LAN between workstation to make a distribute cluster

6. Specific competences acquired

P
ro

fe
ss

io
n

al
 c

o
m

p
et

en
ce

s • Programming languages awareness for effective programming, including code, components

and services creation, and integration of multiple subsystems

T
ra

n
sv

er
sa

l
co

m
p

et
en

ce
s

• Understand and be able to use specific tools, components, and frameworks and also abstract

elements such as algorithms and architectures

• Organize and lead development teams, including team-building and negotiation

• Serve as an agent of change for introducing new technology

7. Course objectives (as resulting from the grid of specific competences)

7.1 Subject general goal • Familiarize the student with a framework for storing, processing and

analyzing “Big Data”

7.2 Specific objectives • Learn concepts about Hadoop Distributed File System and related

concepts, applications and languages, including NoSQL

8. Content

8.1 Course Teaching methods Observations

What is Big Data – Use Cases and Intro to

Apache Hadoop

Instructor Led Training In class, Live Virtual Class

The Hadoop Ecosystem

Writing a MapReduce Program in Java

Delving Deeper into the Hadoop API Combiner, Distributed cache

Practical Development Tips and Techniques Strategies for debugging MapReduce code

Partitioners and reducers Writing custom Partitioners

Common MapReduce Algorithms How to sort, search, index and compute TF-

IDF

Hadoop Tools for Data Acquisition Use Sqoop and Flume

Introduction of NoSQL & Spark Overview of NoSQL concepts and the

 Apache Spark framework

Features for data acquisition, storage and analysis Usage of Pig and Hive

Multi Dataset operations with Pig Usage of grouping, combining, join,
concatenating and splitting

Introduction to Hive How does Hive differ from RDBMS?

Text processing with Hive Emphasize the need to analyze
unstructured and semi-structured data

Introduction to Impala How to achieve a trade off between high

speed and cost for interactive/ad hoc
queries in data analysis

Bibliography
1. Putting Big Data to Work: Opportunities for Enterprises, by Brett Sheppard, © 2011 GigaOM pro.gigaom.com

2. The Big Book of Big Data, A field guide for Industry-based Big Data Opportunities, © 2013 Oracle Inc., 1-st Edition

3. Hadoop: The Definitive Guide, by Tom White, 3-rg Edition, O’Reilley 2012, ISBN-13: 978-1449311520
4. HBase, The Definitive Guide, by Larss George, 1-st Edition, O’Reilley 2011, ISBN-13: 978-1449396107

5. Programming Pig, by Alan Gates, 1-st Edition, O’Reilley 2011, ISBN-13: 978-1449302641

6. Programming Hive, by E. Capriolo, D. Wampler, J. Rutherglen, 1-st Edition, O’Reilley 2012, ISBN-13: 978-

1449319335

7. Oracle NoSQL Database: Real-time Big Data Management for the Enterprise, by M. Alam, A. Muley, C. Kadaru, A.

Joshi, 1-st Edition, Oracle Press 2013, ISBN-13: 978-0071816533
8. Oracle Big Data Handbook, by T. Plumkett & B. Macdonald, 1-st Edition, Oracle Press 2013, ISBN-13: 978-

0071827263

8.2 Seminar Teaching methods Observations

8.3 Laboratory

Using HDFS

Running a MapReduce Job

Writing a MapReduce Java and Streaming
Programs and Testing with MRUnit

framework

Using ToolRunner and Passing
Parameters; using a Combiner

Testing with LoalJobRunner, Logging and
using Counters and a Map-Only Job

Writing a Partitioner, implementing a

Customr WritableComparable and using
SequenceFiles and File Compression

Creating an Inverted Index and
calculating Word Co-Occurance

Running an Oozie Workflow and
exploring a Secondary Sort Example

Using Pig for ETL Processing and
Analyzing Ad Campaign Data with Pig

Analyze Disparate Data Sets with Pig and
extend Pig with Streaming and UDFs

Running Hive Queries from the Shell,
Scripts and Hue and performing Data

Management with Hive

Gaining Insight with Sentiment Analysis
and Transforming Data with Hive

Interactive Analysis with Impala

Bibliography
www.claudera.com

http://www.claudera.com/

9. Subject’s relevance to the epistemic community, professional associations and representative

employers in fields significant for the program

10. Assessment

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Weight in

final grade

10.4 Course

Knowledge of the courseware content Quiz of 30 questions randomly choosen

from a datanase of 150 questions
70%

10.5 Seminar

10.6

Laboratory/Project

Completion of two home

assignments

Achievement of the two home

assignments is a precondition to

enter the final evaluation test

30%

10.7 Minimal standard of performance

• 50% correct answer to the final Quiz

• BigData is the emerging domain dealing with the global digital disruption, at the confluence of Language

programming in distributed systems, Business Intelligence/Advanced Analytics, Data Modeling and

Statistics. With use cases in most activity fields, Big Data is the new paradigm in Information Systems

• Big Data is one of the 4 pillars for Horizon 2020 Research program of EU

• Mc Kinsey mentions a shortage of 140000-190000 people with deep analytical skills in US only

• UEFISCDI has established in 2013 that Big Data is one of the strategic directions for research in Romania

Model Driven Software Engineering

1. Information about the program

1.1 Higher education institution University POLITEHNICA of Bucharest

1.2 Faculty Faculty of Engineering in Foreign Languages

1.3 Department Department of Engineering in Foreign Languages

1.4 Field of study Computers and Information Technology

1.5 Study cycle Master

1.6 Program / Qualification Software Engineering

2. Data about the subject

2.1 Name of subject Model Driven Software Engineering

2.2 Course holder

2.3 Seminar holder

2.4 Laboratory/project holder

2.5 Year of study 1 2.6 Semester 2 2.7 Evaluation type E 2.8 Subject type DAP/DO

3. Estimated time (hours per semester) of didactic activities

3.1 Number of hours per week 3 course hours 2 seminar - laboratory 1

3.2. Number of hours per semester 42 course hours 28 seminar laboratory 14

3.3.Distribution of spend time: h.

Study of textbooks, bibliography and course notes 12

Supplementary study in library, on electronic platforms, on the fieldwork 8

Preparation of seminars/laboratories, home assignments, papers, portfolios, essays 14

Tutoring 4

Examinations 4

Other activities

3.4 Total hours of individual study 42

3.5 Total hours per semester 84

3.6 Number of credits 4

4. Preconditions (where relevant)

4.1 curriculum- related •

4.2 competence - related • Object oriented modeling

5. Facilities and equipment (where relevant)

5.1 for the course • Room with video projector

5.2 for the course seminar •

5.3 for the laboratory/project • Computer laboratory

6. Specific competences acquired

P
ro

fe
ss

io
n

al
 c

o
m

p
et

en
ce

s • Apply design and development methods and techniques as appropriate to realize

solutions along the whole life-cycle of the software product

T
ra

n
sv

er
sa

l
co

m
p

et
en

ce
s

• Understand and be able to use specific tools, components, and frameworks and also abstract

elements such as algorithms and architectures

• Organize and lead development teams, including team-building and negotiation

• Serve as an agent of change for introducing new technology

7. Course objectives (as resulting from the grid of specific competences)

7.1 Subject general goal • The general goal is to show that models have overtaken their

declarative role in software development and have become

imperative in certain contexts, being used for driving applications,
similarly as programs, but at a higher level of abstraction.

7.2 Specific objectives • Present metamodels as languages for defining models

• Describe software architectures specific for rendering the models

executable

• Show the possibilities to transform and compose models and

metamodels.

• Prove that software development may be leveraged by using

various models, metamodels, languages, by getting familiar with

the definition and interpretation of models

• Define metamodels and generating editors corresponding to them

• Familiarize the student with some software development

environments that support MDE.

8. Content

8.1 Course Teaching methods Observations

Principles of Model Driven Engineering - Presentation on slides

- Discussions

- Formative tests

Model Driven Architecture and standards

UML Metamodel and the possibility to

extend it with profiles

Metamodeling Languages: MOF, Ecore,
XMF, GME language

Domain Specific Languages

Software Environments for Modeling and

Metamodeling

Using DSLs in Product Line Architecture.

Generative Programming.

Using workflow models in Service
Oriented Architectures

Separation of concerns. Domain Models

Types of model transformations

Model markers and annotations

Automatic code generation

Composing models and metamodels

Bibliography

St.J. Mellor, K. Scott, A. Uhl, D. Weise, MDA Distilled: Priciples of Model-Driven Architecture, Addison

Weesley, 2004

J. Greenfield, K. Short, Software Factories: Assembling Applications with Patterns, Models, Frameworks, and

Tools, Wiley Publishing, Inc., 2004

J. Estublier, A. D. Ionita, G. Vega, Relationships for Domain Reuse and Composition, Journal of Research and

Practice in Information Technology, 38, 4, ISSN 1443-458X, pp. 287-301, 2006

T. Clerk, P. Sammut, J. Willams, Applied Metamodelling. A Foundation for Language Driven Development,

Ceteva, 2008

D. Gaševic, D. Djuric, V. Devedžic, Model Driven Engineering and Ontology Development, Springer, 2nd ed.,

2009

Ian Sommerville, Software Engineering, Editia a 9-a, Addison-Wesley, 2010
J. Estublier, A.D. Ionita, T. Nguyen, Code Generation for a Bi-dimensional Composition Mechanism, In

“Software engineering techniques : Third IFIP TC 2 Central and East European Conference, CEE-SET

2008, Brno, Czech Republic, October 13-15, 2008, revised selected papers”, Z. Huzar et al. (Eds.), Lecture

Notes in Computer Science, LNCS 4980, pp. 171-185, Springer, 2011

A.D. Ionita, J. Estublier, “Business Process Modeling and Automation with General and Domain Specific

Languages”, In Business Process Modeling: Software Engineering, Analysis and Applications, Jason A.

Beckmann Ed., Seria Business Issues, Competition and Entrepreneurship, Nova Science Publishers, 2011

A.D. Ionita, A. Olteanu, T. Ionescu, L. Dobrica, Automatic Transformations for Integrating Instrument Models

across Technological Spaces, Romanian Journal of Information Science and Technology, Volume 14,

Number 1, ISSN: 1453-8245, The Publishing House of the Romanian Academy, 2011, pp. 51-66

OMG, OMG Unified Modeling Language TM (OMG UML), Version 2.5, September 2013, disponibil

la www.omg.org
A.D. Ionita, M. Litoiu, G. Lewis (Editors) Migrating Legacy Applications: Challenges in Service-Oriented

Architecture and Cloud Computing Environments, IGI Global, 2013

8.2 Seminar Teaching methods Observations

8.3 Laboratory

Study examples of models and

metamodels, in order to understand the
necessity of metamodeling

- Explanations at the

beginning of the laboratory

- Assisted individual work

- Study of examples

- Use of a predefined

structure for the

specifications

- Homework verification

and evaluation

Define models starting from a given
metamodel

Define a metamodel (DSL) for a given
application domain

Use a metamodeling environment for
defining a metamodel and generating an

editor of models conforming to it

Configure the metamodel interpreter

Bibliography
GME Manual and User Guide, 2000-2014 Vanderbilt University

http://www.omg.org/

9. Subject’s relevance to the epistemic community, professional associations and representative

employers in fields significant for the program

10. Assessment

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Weight in

final grade

10.4 Course
Specific criteria for each question

of the examination

Final verification (exam) 40

10.5 Seminar

10.6

Laboratory/Project
All the indicated topics approached

Coherent concepts and relationships

Evaluation of a case study 10

Executable modeling paradigm

Correspondence between the case

study and the model conforming

to the modeling paradigm
Specific concrete syntax defined

Verification of individual work and

evaluation of the customized

modeling paradigm

30

Marks for participation to the class

activities

Average of marks 10

Evaluation of the configuration for
a given modeling paradigm

Laboratory test 10

10.7 Minimal standard of performance

• Accumulation of minimum 50 points

• The content is aligned to the specifications adopted by an international industrial standards consortium

(OMG) and to the competencies required by software companies. Apart from general modeling languages,

the course also approaches domain specific languages, which are used in many industrial settings based on

product lines.

Distributed Software Engineering

1. Information about the program

1.1 Higher education institution University POLITEHNICA of Bucharest

1.2 Faculty Faculty of Engineering in Foreign Languages

1.3 Department Department of Engineering in Foreign Languages

1.4 Field of study Computers and Information Technology

1.5 Study cycle Master

1.6 Program / Qualification Software Engineering

2. Data about the subject

2.1 Name of subject Distributed Software Engineering

2.2 Course holder

2.3 Seminar holder

2.4 Laboratory/project holder

2.5 Year of study 1 2.6 Semester 2 2.7 Evaluation type E 2.8 Subject type DAP/DA

3. Estimated time (hours per semester) of didactic activities

3.1 Number of hours per week 4 course hours 2 seminar project 2

3.2. Number of hours per semester 56 course hours seminar project 28

3.3.Distribution of spend time: 52 h.

Study of textbooks, bibliography and course notes 12

Supplementary study in library, on electronic platforms, on the fieldwork 12

Preparation of seminars/laboratories, home assignments, papers, portfolios, essays 25

Tutoring

Examinations 3

Other activities

3.4 Total hours of individual study 52

3.5 Total hours per semester 1 108

3.6 Number of credits 4

4. Preconditions (where relevant)

4.1 curriculum- related • Attending and/or passing the following courses: Parallel and distributed

algorithms, Computer networks, Distributed systems

4.2 competence - related • Operate with scientific, engineering, and information technology concepts, Solve

problems by using instruments of the computer science and engineering field

Facilities and equipment (where relevant)

5.1 for the course •

5.2 for the course seminar •

5.3 for the laboratory/project •

5. Specific competences acquired

P
ro

fe
ss

io
n

al
 c

o
m

p
et

en
ce

s • Apply design and development methods and techniques as appropriate to realize solutions

along the whole life-cycle of the software product

• Programming languages awareness for effective programming, including code, components

and services creation, and integration of multiple subsystems

T
ra

n
sv

er
sa

l
co

m
p

et
en

ce
s

• Understand and be able to use specific tools, components, and frameworks and also abstract

elements such as algorithms and architectures

• Organize and lead development teams, including team-building and negotiation

• Serve as an agent of change for introducing new technology

6. Course objectives (as resulting from the grid of specific competences)

7.1 Subject general goal • Learning and integrating the main concepts, principles, models, and
techniques related to distributed program systems development.
Capability to use this knowledge in modeling, design of software
components for distributed systems. Implementing middleware
programs using current technologies. Evaluation how the developed
systems satisfy the specification criteria and performance optimization
by using specific instruments and engineering methods.

7.2 Specific objectives • Study actual problems in the domain of distributed processing over
computer networks.

• Research new solutions to solve complex problems in distributed
systems, related to assuring interprocess communication, data
replication for increasing performance, ensuring consistency, fault
tolerance, and security in Web based systems.

• Study heterogeneous systems based on objects, mobile networks and
mobile agents.

• Acquire practical abilities needed for the design, implementation, and
evaluation of distributed systems components.

 • Identification of concrete problems related to actual distributed
systems and finding high performance solutions.

• Effective use of design and implementation instruments for distributed
systems.

• Deployment, exploitation, and maintenance of distributed system
programs.

7. Content

8.1 Course Teaching methods Observations

Introduction. Models and architectures of
dynamic large scale distributed systems
(client-server, service oriented, peer-to-peer
and others). Specific design requirements:
scalability, transparency, and performance.

Face to face teaching The course provides teaching,
supplemented by discussing
recommended paper in class.
Course teaching is done with PPT
presentations. For paper discussions,
papers are made accessible on the
course site. Students will shortly present
personal opinions about the papers
under discussion.

On course site are provided:
- teaching materials (presentation slides)
- fragments from books and papers
authored by the teacher

- papers to be discussed in the class
- information about course
administration
- information about the points acquired
by students during the semester
- discussion forum.

P2P Systems. Internet Architectures and

technologies for content distribution

(client/server, multicast, P2P). Search

services, hash tables. Search and download

performance in P2P Systems. Gossip

protocols. P2P streaming. Dynamic scalable

efficient content replication techniques.

Anonymity. Reputation management in P2P

systems. Self-* properties in P2P systems.

Event driven distributes systems.
Architectures, components. Complex event
processing, detecting events templates. ECA

(event, condition, action) and finite state

machines with interval timestamps. Intelligent

engines for event processing. Events and

increasing reactivity of RIA (Rich Internet

Applications). Event based Collaborative

Applications.

Cloud computing. Resource provisioning.

Optimizing resource use. Energy

management. Traffic management. Data

Security. Software frameworks for

performance optimization. Storage

Technologies and data management. Data and
computation intensive models: MapReduce.

Context based distributed systems. Context
information sensing, transmission, and
processing. Context models; ontology-based

models. Context based autonomous systems.
Resource discovery. Historical context data.

Security and privacy.

Bibliography
1. A.S. Tanenbaum, M. van Steen. Distributed Systems. Principles and paradigms, Prentice Hall 2007

2. George Coulouris, Jean Dollimore,Tim Kindberg, Gordon Blair. Distributed Systems Concepts and Design (Fifth

Edition), Addison-Wesley, 2012

3. L. Shklar, R. Rosen. Web Application Architecture, John Wiley & Sons, 2003

4. E. Cerami. Web Services, O'Relly 2002
5. T.B. Passin. Explorer's Guide to the Semantic Web, Manning 2004

6. Valentin Cristea, Ciprian Dobre, Corina Stratan, Florin Pop, Alexandru Costan, "Large-scale Distributed Computing and

Applications: Models and Trends", Ed. Information Science Publishing, ISBN : 978-1615207039, 390 pg., April 2010.

7. Cristea, Valentin and Dobre, Ciprian and Pop, Florin. Context-Aware Environments for the Internet of Things. Chapter in

Internet of Things and Inter-cooperative Computational Technologies for Collective Intelligence (Nik Bessis, Fatos Xhafa,

Dora Varvarigou, Richard Hill, Maozhen Li). Springer Berlin Heidelberg, vol. 460, pp. 25--49, August 2013
8. Set of up-to-date papers offered to students on the course site.

8.2 Seminar Teaching methods Observations

Requirements analysis Individual or group (2-3
students) projects

On the course site the following
information is available:
- support documentation for projects
development
- information regarding seminar and
project administration
- discussion forum.

Documentary research of state-of-the art in
the domain

Design model elaboration

Development instruments selection

Implementation

Performance analysis

Conclusions, further work, results exploitation

8.3 Project

Idem Seminar Projects are posted on the site course
for evaluation and ranking.

Bibliography
Idem Course

8. Subject’s relevance to the epistemic community, professional associations and representative

employers in fields significant for the program

9. Assessment

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Weight in

final grade

10.4 Course

Responses’ correctness Topics discussions in the class 40%

Correctness of the responses to exam
queries

Written exam 10%

10.5 Seminar

10.6 Project Correctness and completeness of the
responses

Tests during the semester 30%

Correctness and completeness of the
solutions

Project defense 20%

10.7 Minimal standard of performance

• obtain 50 % of the points allocated to the Course (3.5 points out of 7)

• obtain 50 % of the points allocated to project elaboration and final defense (1.5 points out of 3)

•

Software Methodologies

1. Information about the program

1.1 Higher education institution University POLITEHNICA of Bucharest

1.2 Faculty Faculty of Engineering in Foreign Languages

1.3 Department Department of Engineering in Foreign Languages

1.4 Field of study Computers and Information Technology

1.5 Study cycle Master

1.6 Program / Qualification Software Engineering

2. Data about the subject

2.1 Name of subject Software Methodologies

2.2 Course holder

2.3 Seminar holder -

2.4 Laboratory/project holder

2.5 Year of study 1 2.6 Semester 2 2.7 Evaluation type E 2.8 Subject type DSI/DO

3. Estimated time (hours per semester) of didactic activities

3.1 Number of hours per week 3 course hours 2 seminar laboratory 1

3.2. Number of hours per semester 42 course hours 28 seminar laboratory 14

3.3.Distribution of spend time: h.

Study of textbooks, bibliography and course notes 32

Supplementary study in library, on electronic platforms, on the fieldwork

Preparation of seminars/laboratories, home assignments, papers, portfolios, essays 32

Tutoring

Examinations 2

Other activities

3.4 Total hours of individual study 64

3.5 Total hours per semester 1 108

3.6 Number of credits 4

4. Preconditions (where relevant)

4.1 curriculum- related • Graduating one or more programming courses

4.2 competence - related • Minimal background of Computer science

Facilities and equipment (where relevant)

5.1 for the course •

5.2 for the course seminar •

5.3 for the laboratory/project •

5. Specific competences acquired

P
ro

fe
ss

io
n

al
 c

o
m

p
et

en
ce

s • Design appropriate software solutions, using responsible engineering approaches and applying

theories and models that provide a basis for software design

• Apply design and development methods and techniques as appropriate to realize solutions

along the whole life-cycle of the software product

T
ra

n
sv

er
sa

l
co

m
p

et
en

ce
s • Understand and be able to use specific tools, components, and frameworks and also abstract

elements such as algorithms and architectures

• Organize and lead development teams, including team-building and negotiation
• Serve as an agent of change for introducing new technology

6. Course objectives (as resulting from the grid of specific competences)

7.1 Subject general goal • The course provides students with both a broad understanding of
the space of current methodologies, and specific skills in using
these methodologies. It provides methods, techniques and tools
for systematic development of complex systems and software
systems in particular

7.2 Specific objectives • The course provides an overview of the evolution of the
methodologies of systems/software development, including the
latest development methodologies based on software
components and service orientation.

7. Content

8.1 Course Teaching methods Observations

Introduction to Systems Engineering slides

Enterprise-Wide Information System
Methodologies

slides

Introduction to Software Engineering slides

Structured Information System
Methodology

slides

Object-Oriented Software Methodology slides

Bibliography

Derek Hatley, Peter Hruschka, Imtiaz Pirbhai, “Process for System Architecture and Requirements
Engineering”, Dorset House Publ., 2000.

Ian Sommerville, Software Engineering. 8th Edition. Addison-Wesley 2007.

Ed Yourdon, Modern Structured Analysis, Prentice Hall, 1989.

Luca Dan Serbanati, “Integrating Tools for Software Development”, Prentice Hall, 1993.

Luca Dan Serbanati, Software Methodologies, Lecture Notes, 2014,
http://www.serbanati.com/poli/index_smeth.php.

Thomas Erl, “Service-Oriented Architecture (SOA): Concepts, Technology, and Design”, Prentice Hall, 2005.

James Rumbaugh, Ivar Jacobson, Grady Booch, “The unified modeling language reference manual”, v. 1-3,
Addison-Wesley, 1999-200,

8.2 Seminar Teaching methods Observations

8.3 Laboratory

Introduction to Systems Engineering Debate of the homework, exercise
solving, laboratory work

Enterprise-Wide Information System
Methodologies

Debate of the homework, exercise
solving, laboratory work

Introduction to Software Engineering Debate of the homework, exercise
solving, laboratory work

Structured Information System
Methodology

Debate of the homework, exercise
solving, laboratory work

Object-Oriented Software Methodology Debate of the homework, exercise
solving, laboratory work

Bibliography

Derek Hatley, Peter Hruschka, Imtiaz Pirbhai, “Process for System Architecture and Requirements
Engineering”, Dorset House Publ., 2000.

Ed Yourdon, Modern Structured Analysis, Prentice Hall, 1989.

Rod Johnson, “Expert One-on-One J2EE Design and Development”, Wrox, 2002.

8. Subject’s relevance to the epistemic community, professional associations and representative

employers in fields significant for the program

9. Assessment

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Weight in

final grade

10.4 Course
Written examination Questions of theoretical knowledge 30%

 Solving practical exercises 30%

10.5 Seminar

10.6 Homework 20%

• Practical development of software requires an understanding of successful methods for bridging the gap
between a problem to be solved and a working software system. This course focuses specifically on
methods that guide the software engineer from requirements to code. For this it presents the most known
software methodologies, that is those knowledge realms created around a development paradigm and
formed from methods, techniques, rules, postulates, and tools to be used for software fabrication. They
guide the software engineer in software development process from requirements identification to code
generation and validation.

http://www.serbanati.com/poli/index_smeth.php
http://www.google.it/search?hl=it&tbo=p&tbm=bks&q=inauthor%3A%22James%2BRumbaugh%22
http://www.google.it/search?hl=it&tbo=p&tbm=bks&q=inauthor%3A%22Ivar%2BJacobson%22
http://www.google.it/search?hl=it&tbo=p&tbm=bks&q=inauthor%3A%22Grady%2BBooch%22

Laboratory/Project Mini-project 20%

10.7 Minimal standard of performance

• Exam admission criterium : only with a higher grade of 4
• Exam promotion with the final grade at least 5

Computing in the Semantic Web

1. Information about the program

1.1 Higher education institution University POLITEHNICA of Bucharest

1.2 Faculty Faculty of Engineering in Foreign Languages

1.3 Department Department of Engineering in Foreign Languages

1.4 Field of study Computers and Information Technology

1.5 Study cycle Master

1.6 Program / Qualification Software Engineering

2. Data about the subject

2.1 Name of subject Computing in the Semantic Web

2.2 Course holder

2.3 Seminar holder

2.4 Laboratory/project holder

2.5 Year of study 1 2.6 Semester 2 2.7 Evaluation type E 2.8 Subject type DPA/DO

3. Estimated time (hours per semester) of didactic activities

3.1 Number of hours per week 3 course hours 2 seminar 0 laboratory 1

3.2. Number of hours per semester 42 course hours 28 seminar 0 laboratory 14

3.3.Distribution of spend time: h.

Study of textbooks, bibliography and course notes 10

Supplementary study in library, on electronic platforms, on the fieldwork 10

Preparation of seminars/laboratories, home assignments, papers, portfolios, essays 7

Tutoring 10

Examinations 3

Other activities

3.4 Total hours of individual study 40

3.5 Total hours per semester 1 82

3.6 Number of credits 4

4. Preconditions (where relevant)

4.1 curriculum- related • Database, HTML, algorithm design, web services

4.2 competence - related •

5. Facilities and equipment (where relevant)

5.1 for the course •

5.2 for the course seminar •

5.3 for the laboratory/project •

6. Specific competences acquired

P
ro

fe
ss

io
n
al

 c
o

m
p

et
en

ce
s

• Apply design and development methods and techniques as appropriate to realize solutions along the

whole life-cycle of the software product

• Programming languages awareness for effective programming, including code, components and
services creation, and integration of multiple subsystems

 • Understand and be able to use specific tools, components, and frameworks and also abstract

elements such as algorithms and architectures

• Organize and lead development teams, including team-building and negotiation

• Serve as an agent of change for introducing new technology

7. Course objectives (as resulting from the grid of specific competences)

7.1 Subject general goal Designing and implementing semantic web applications aligned with the

vision of "linked data" - perceived as the main evolution of the current
social web.

7.2 Specific objectives For course:

- The semantic web is seen as a collection of accessible information

that can be organized and used at a semantic level instead of using it

at the syntactic and structural level. The course describes both a new

generation of web standards and applications that have the ability to

represent and use the semantics of specific information as well as the

technologies needed to build such applications. The course will

address the understanding of the Semantic Web from three

perspectives: the theoretical aspects of information organization such
as ontologies, taxonomies and semantic data modelling; aspects of

understanding and creating information networks, and application-

 centered Web services semantics, semantic services for the business

process, APIs and mashups.
For applications:

- The applications aim at building ontologies and writing the code that

accesses them; representing XML data with appropriate semantic

markings, which are obtained or derived from ontology; describing

semantic relations between these elements using RDF and OWL;

developing an application that discovers data and/or Web services
based on semantic criteria.

8. Content

Course Teaching methods Observations

Introduction

• Representation of knowledge

• RDF

• RDFS and OWL

• The process of creating ontologies

• Alignment of ontologies

• SPARQL

• Semantic web-specific tools

• The social semantic web

• Semantic Models (LSA - Latent

Semantic Analysis and LDA -

Latent Dirichlet Allocation,

word2vec)

• Semantic web services

• Trends in the field

Face-to-face Lecturing Course Material available in

electronic format.

Bibliography

1. Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific american, 284(5),

28-37.

2. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., ... & Bizer, C.

(2015). DBpedia–a large-scale, multilingual knowledge base extracted from Wikipedia. Semantic

Web, 6(2), 167-195.

3. Maedche, A. (2012). Ontology learning for the semantic web (Vol. 665). Springer Science &

Business Media.

4. Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato's problem: the Latent Semantic

Analysis theory of acquisition, induction and representation of knowledge. Psychological Review,

104(2), 211–240.

5. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine

Learning Research, 3(4-5), 993–1022.

6. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representation

in Vector Space. In Workshop at ICLR. Scottsdale, AZ.

7. M. C. Daconta, et al. The Semantic Web: A Guide to the Future of XML, Web Services, and

Knowledge Management. John Wiley & Sons, Inc. 2003

8. D. Allemang, J. Hendler. Semantic Web for the Working Ontologist: Effective Modeling in RDFS

and OWL, Morgan Kaufmann, 2008
9. G. Antoniou, F. van Harmelen. A Semantic Web Primer, The MIT Press, 2nd Edition (Cooperative

Information Systems) 2008
10. L. Yu. Introduction to the Semantic Web and Semantic Web Services, Chapman & Hall, 2007
11. *** Course notes and slides

8.2 Seminar Teaching Method Observation

8.3 Laboratory

Specifying an ontology Laboratory Work

Extracting data Laboratory Work

Implementing a semantic service Laboratory Work

Developing an application that uses
semantic services

Laboratory Work

Implement a given application Laboratory Work

Bibliography

The same as for the course

9. Subject’s relevance to the epistemic community, professional associations and representative

employers in fields significant for the program

10. Assessment

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Weight in

final grade

10.4 Course The Correctness of solving the

problems

Written Exam 40%

10.5 Seminar

10.6
Laboratory/Project

Laboratory Assignment Evaluating homework 60%

10.7 Minimal standard of performance

• Minimum 50% of the marks from Seminaries Assignments and Course Activities part (3 points out of 6)
• Minimum of 50 % from final examination (2 points out of 4)

Technologies for the semantic web are an important factor for processing information from the web, which today

is very important in the success of many industrial, commercial enterprises. The course offers students the

opportunity to get acquainted with such techniques and information processing from the web, a fact that is very

important at the moment.

Advanced Topics in Computer Networks

1. Information about the program

1.1 Higher education institution University POLITEHNICA of Bucharest

1.2 Faculty Faculty of Engineering in Foreign Languages

1.3 Department Department of Engineering in Foreign Languages

1.4 Field of study Computers and Information Technology

1.5 Study cycle Master

1.6 Program / Qualification Software Engineering

2. Data about the subject

2.1 Name of subject Advanced Topics in Computer Networks

2.2 Course holder

2.3 Seminar holder

2.4 Laboratory/project holder

2.5 Year of study 1 2.6 Semester 2 2.7 Evaluation type E 2.8 Subject type DPA/DO

3. Estimated time (hours per semester) of didactic activities

3.1 Number of hours per week 3 course hours 1 seminar laboratory 2

3.2. Number of hours per semester 42 course hours 14 seminar laboratory 28

3.3.Distribution of spend time: h.

Study of textbooks, bibliography and course notes 20

Supplementary study in library, on electronic platforms, on the fieldwork 20

Preparation of seminars/laboratories, home assignments, papers, portfolios, essays 10

Tutoring 3

Examinations 3

Other activities

3.4 Total hours of individual study 66

3.5 Total hours per semester 1 108

3.6 Number of credits 4

4. Preconditions (where relevant)

4.1 curriculum- related • Introduction to Information Technology

• Data Structures and Algorithms

4.2 competence - related • Programing Experience

5. Facilities and equipment (where relevant)

5.1 for the course • Overhead Projector

5.2 for the course seminar •

5.3 for the laboratory/project • 20 PC

6. Specific competences acquired

P
ro

fe
ss

io
n
al

 c
o
m

p
et

en
ce

s • Apply design and development methods and techniques as appropriate to realize solutions

along the whole life-cycle of the software product

• Programming languages awareness for effective programming, including code, components

and services creation, and integration of multiple subsystems

T
ra

n
sv

er
sa

l
C

o
m

p
et

en
ce

s

• Understand and be able to use specific tools, components, and frameworks and also abstract

elements such as algorithms and architectures

• Organize and lead development teams, including team-building and negotiation

• Serve as an agent of change for introducing new technology

7. Course objectives (as resulting from the grid of specific competences)

7.1 Subject general goal • The course provides students with advanced digital network
concepts and principles. The course introduces students to
internetworking, routing and network management.
Students are provided with an opportunity to design and
implement a network, network management and information
routing throughout the network.

7.2 Specific objectives • Ability to apply knowledge of Advanced Network
Engineering including design, routing, management,
security and performance and ability to understand and use
industry standard tools used.

• Ability to formulate and solve problems creatively,
especially in network design, routing, management, security
and performance.

8. Content

Course Teaching methods Observations

Review for networking basics and IP

networks

Lecturing

Introduction to wireless networks Lecturing

Introduction to algorithm design and

optimization, and their applications in

networking.

Lecturing

Scheduling algorithms and MAC layer

protocols (link layer)
Lecturing

Routing algorithms and protocols

(network layer)

Lecturing

Congestion control algorithms and

protocols (transport layer)

Lecturing

Cross-layer design
Lecturing

Quality of Service (QoS) provisioning
Lecturing

Network security
Lecturing

Bibliography

1. Computer Networks: A Systems Approach (4th Edition) by Larry Peterson and Bruce Davie.

Morgan Kaufmann, 2007. ISBN: 0123705487.

2. Technical papers from major networking journals including IEEE/ACM Transactions on

Networking, IEEE Transactions on Mobile Computing, IEEE Journals on Selected Areas in

Communications, IEEE Transactions on Wireless Communications, ACM Transactions on Sensor

Networks, Journal of Computer Networks and so on.

3. Technical papers from major networking conferences including IEEE INFOCOM, IEEE ICC, ACM

MobiCom, ACM MobiHoc, ACM SenSys and so on.

8.2 Seminar Teaching Method Observation

8.3 Laboratory

Network fundamentals Laboratory Work

wireless fundamentals Laboratory Work

CDMA, Bluetooth, sensor networks Laboratory Work

LAN, cellular networks Laboratory Work

Bibliography

Same as for the course

9. Subject’s relevance to the epistemic community, professional associations and representative

employers in fields significant for the program

• Computer Network is a building block for the building of a software system. Any modern computational
system is mostly in a distributed form and it uses the network capabilities for the well-functioning of the

10. Assessment

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Weight in

final grade

10.4 Course
Course Presence and Activities Presence and Activities Evaluation 10%

Final Examinations Written Exam 40%

10.5 Seminar

10.6
Laboratory/Project

Laboratory Assignment Assignments Correction 50%

10.7 Minimal standard of performance

• Minimum 50% of the marks from Seminaries Assignments and Course Activities part (3 points out of 6)
• Minimum of 50 % from final examination (2 points out of 4)

software. Therefore, skills acquired during this course represents an important building block for the
making of software systems.

Software Architectures

1. Information about the program

1.1 Higher education institution University POLITEHNICA of Bucharest

1.2 Faculty Faculty of Engineering in Foreign Languages

1.3 Department Department of Engineering in Foreign Languages

1.4 Field of study Computers and Information Technology

1.5 Study cycle Master

1.6 Program / Qualification Software Engineering

2. Data about the subject

2.1 Name of subject Software Architectures

2.2 Course holder

2.3 Seminar holder

2.4 Laboratory/project holder

2.5 Year of study 2 2.6 Semester 1 2.7 Evaluation type E 2.8 Subject type DAP/DO

3. Estimated time (hours per semester) of didactic activities

3.1 Number of hours per week 4 course hours 2 seminar laboratory 2

3.2. Number of hours per semester 56 course hours 28 seminar laboratory 28

3.3.Distribution of spend time: h.

Study of textbooks, bibliography and course notes 24

Supplementary study in library, on electronic platforms, on the fieldwork

Preparation of seminars/laboratories, home assignments, papers, portfolios, essays 24

Tutoring

Examinations 4

Other activities

3.4 Total hours of individual study 52

3.5 Total hours per semester 1 108

3.6 Number of credits 4

4. Preconditions (where relevant)

4.1 curriculum- related • Graduating the Software Methodologies course

4.2 competence - related • Background knowledge in systems engineering and computer programming

5. Facilities and equipment (where relevant)

5.1 for the course •

5.2 for the course seminar •

5.3 for the laboratory/project •

6. Specific competences acquired

P
ro

fe
ss

io
n

al
 c

o
m

p
et

en
ce

s

• Design appropriate software solutions, using responsible engineering approaches and
applying theories and models that provide a basis for software design

• Work effectively in interdisciplinary contexts, in particular to bridge the gap between
computing technology and the clients business and to interpret and respect extra-technical
constraints deriving from the business organization

T
ra

n
sv

er
sa

l
co

m
p
et

en
ce

s

• Understand and be able to use specific tools, components, and frameworks and also abstract
elements such as algorithms and architectures

• Organize and lead development teams, including team-building and negotiation

• Serve as an agent of change for introducing new technology

7. Course objectives (as resulting from the grid of specific competences)

7.1 Subject general goal • The course teaches students knowledge and skills necessary for
evaluating the architecture of existing systems and architectural
design of new systems in accordance with current architectural
paradigms.

7.2 Specific objectives • The course aims to introduce:
advanced software systems architectures,
techniques for designing and implementing these architectures,
formal models and notations for characterization and development
of these architectures,
tools for generating instances of architectures, and
case studies of actual systems architectures.

8. Content

8.1 Course Teaching methods Observations

Software architectural styles slides

Component-based architectures slides

Middleware systems slides

Enterprise integration slides

Service-oriented architectures slides

Bibliography
1. D. Garlan, M. Shaw, "An Introduction to Software Architecture", Advances in Software Engineering and

Knowledge Engineering", Volume I, World Scientific, 1993
2. P. Avgeriou, U. Zdun, “Architectural Patterns Revisited – A Pattern Language”, in: Proceedings of 10th

European Conference on Pattern Languages of Programs (EuroPlop 2005), Irsee, Germany, July, 2005
3. Neil B. Harrison, Paris Avgeriou, Uwe Zdun, "Using Patterns to Capture Architectural Decisions," IEEE

Software, vol. 24, no. 4, pp. 38-45, July/Aug. 2007.
4. http://www.oracle.com/technetwork/java/javaee/overview/index.html
5. http://www.omg.org/spec/CORBA/
6. http://www.enterpriseintegrationpatterns.com/
7. http://www.springframework.org/
8. Fred A. Cummins (2002). Enterprise Integration: An Architecture for Enterprise Application and Systems

Integration. John Wiley & Sons. ISBN 0-471-40010-6
9. Gregor Hohpe - Bobby Woolf, "Enterprise Integration Patterns", The Addison-Wesley Professional, 2003
10. JSR 316: JavaTM Platform, Enterprise Edition 6 (Java EE 6) Specification

http://jcp.org/en/jsr/detail?id=316
11. JSR 220: Enterprise JavaBeansTM 3.0 https://www.jcp.org/en/jsr/detail?id=220

8.2 Seminar Teaching methods Observations

8.3 Laboratory

Software architectural styles Debate of the homework,
laboratory work

Component-based architectures Debate of the homework
laboratory work

Middleware systems Debate of the homework,
laboratory work

Enterprise integration Debate of the homework,
laboratory work

Service-oriented architectures Debate of the homework,
laboratory work

Bibliography
1. http://www.oracle.com/technetwork/java/javaee/overview/index.html
2. http://www.omg.org/spec/CORBA/
3. http://www.enterpriseintegrationpatterns.com/
4. http://www.springframework.org/
5. JSR 316: JavaTM Platform, Enterprise Edition 6 (Java EE 6) Specification

http://jcp.org/en/jsr/detail?id=316
6. JSR 220: Enterprise JavaBeansTM 3.0 https://www.jcp.org/en/jsr/detail?id=220

9. Subject’s relevance to the epistemic community, professional associations and representative

employers in fields significant for the program

• The design of complex software systems requires skills in describing, evaluating and creating systems at
architectural abstraction level. This course introduces architectural design of complex software systems in
accordance with the latest trends in software technologies.

http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.omg.org/spec/CORBA/
http://www.enterpriseintegrationpatterns.com/
http://www.springframework.org/
http://jcp.org/en/jsr/detail?id=316
https://www.jcp.org/en/jsr/detail?id=220
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.omg.org/spec/CORBA/
http://www.enterpriseintegrationpatterns.com/
http://www.springframework.org/
http://jcp.org/en/jsr/detail?id=316
https://www.jcp.org/en/jsr/detail?id=220

10. Assessment

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Weight in

final grade

10.4 Course
Written examination Questions of theoretical knowledge 25%

 Solving practical exercises 25%

10.5 Seminar

10.6
Laboratory/Project

 Homework 20%

 Project 30%

10.7 Minimal standard of performance

•

Software Project Management

1. Information about the program

1.1 Higher education institution University POLITEHNICA of Bucharest

1.2 Faculty Faculty of Engineering in Foreign Languages

1.3 Department Department of Engineering in Foreign Languages

1.4 Field of study Computers and Information Technology

1.5 Study cycle Master

1.6 Program / Qualification Software Engineering

2. Data about the subject

2.1 Name of Subject Software Project Management

2.2 Course holder

2.3 Laboratory holder

2.4 Year of study 6 2.5 Semester 1 2.6 Evaluation type E 2.7 Subject type DAP/D

O

3. Estimated time (hours per semester) of didactic activities

3.1 Number of hours per week 4 course 2 seminar laboratory 2

3.4 Number of hours per semester 56 course 28 seminar laboratory 28

3.3.Distribution of spend time:

Study of textbooks, bibliography and course notes 12

Supplementary study in library, on electronic platforms, on the fieldwork 10

Preparation of seminars/laboratories, home assignments, papers, portfolios, essays 10

Tutoring 7

Examinations 3

Other activities

3.4 Total hours of individual

study

52

3.5 Total hours per semester 108

3.6 Number of credits 5

4. Preconditions (where relevant)

4.1 curriculum-

related

• Software Engineering

4.2 competence -

related

• Programing Experience

5. Facilities and equipment (where relevant)

5.1 for the course • Overhead Projector

5.2 for the

laboratory/project

• 20 PC

6. Specific competences acquired

P
ro

fe
ss

io
n

al

co
m

p
et

en
ce

s Work effectively in interdisciplinary contexts, in particular to bridge the gap between computing technology

and the clients business and to interpret and respect extra-technical constraints deriving from the business

organization
T

ra
n

sv
er

sa
l

co
m

p
et

en
ce

s Understand and be able to use specific tools, components, and frameworks and also abstract elements such as

algorithms and architectures

Organize and lead development teams, including team-building and negotiation

Serve as an agent of change for introducing new technology

7. Course objectives (as resulting fro m the grid of specific competences)

7.1 Subject general goal The course is designed to provide detailed insight into the management methods

and responsibilities involved in project management specific to software

development. The course is dedicated to students who want to develop specific

skills, styles and approaches in this area.

The laboratory performs practical examples according to (and synchronized)

with the material taught at the course. In addition to being able to analyze

homework issues, the lab offers the opportunity for students to work in an

organized setting, to a joint project, in teams formed at random, and to

contribute to interactive debates on different approaches in the structure of some

teams and / or in the design / implementation technique of certain projects.

7.2 Specific objectives Through this discipline it is desired to understand clearly the problems, the

success factors and the risks associated with the development of the projects in

the software field, the details of the stages and processes within the life cycle of

a project as well as the planning and management techniques of a project
software.

8. Content

8. 1 Course Teaching Methods Observations

The course as a whole

• Introduction

• Project management

• Fundamental mistakes in addressing projects and ways to

identify them
• Interactive discussion on wrong approaches

Teaching face to face

with video projector.

Presentation of

Internet articles /

specialty magazines.

Presentations of

students at the

course.

Overview of Project Management

• Organizational structures

• Project organizational plans

• Interactive discussion on a number of organizational models

applied in various companies

Planning phase

• Life cycle development models

• Choice of lifecycle models for projects

• Interactive discussion on a series of lifecycle models, the choice

of 2 camps that will present each distinct variant and will fight

against the "opponents" variant while supporting their own
variants.

Estimations and Budget

• Estimates, Budget, Selection of Projects
• Investment recovery models

• Interactive discussion on a range of budgeting models

Project Planning

• Flow of project flow

• UML basics. Types of Charts
• Interactive development of a UML class diagram

Risk and change management

• Risk management
• Change control

Development Management

• Team models

• Conflict management and motivation of individuals
• Interactive discussion about choosing a case study

Project control

• Stage reporting

• Project metrics

• Advanced UML notions

• Interactive discussion about UML detailing for the case study

chosen

Process testing systems
• Test specifications

• Testing tools

• Interactive discussion of the description of UML for the case

study chosen, comparisons with other approaches from similar

projects; the choice of 2 camps that will present each distinct
variant and will fight the variant of "opponents", while supporting

their own variant.

The final stages of the projects

• Recovery of projects

• documentation

• Migration

• Post-project evaluation
• Closing the project

• Interactive discussion on the description and implementation of

UML for the chosen case study, comparisons with other

approaches from similar projects; the choice of 2 camps that will

present each distinct variant and will fight the variant of

"opponents", while supporting their own variant.

Success of the project
• Management of project support services

• Expectations

• Metrics of success

• Interactive discussion of expectations and measurement of case

study success

Bibliography

“Rapid Development”, McConnell, Steve, Microsoft Press, 1996, ISBN 1-55615-900-5.

“Information Technology Project Management”, Schwalbe, Kathy, 2nd ed., Course Technology, 2002, ISBN 0-619-

03528-5.

“UML Distilled: A Brief Guide to the Standard Object Modeling Language”, Fowler, Martin. 3rd ed., Addison-Wesley.

ISBN 0-321-19368-7.

8. 2 Seminar Teaching Methods Observations

8.3 Laboratory

The laboratory as a whole

• Introduction
• Presentation of a case study

• Overview of Project Management

• The organizational structure of the case study

• Planning phase

• Interactive choice of a life model for the case study

• Estimates and Budget
• Choosing a budgeting model

• Project planning

• Flow of project flow

• Case study diagrams

• Risk and change management

• Risk management
• Risks for the case study

Individual,

theoretical and

practical activity;.

design and teamwork

problems, low and

medium complexity

Bibliography
Same as the course

9. Subject’s relevance to the epistemic community, professional associations and representative employers in

fields significant for the program

• Project Management is a very important part of any software development enterprise. The course prepare the

students with the necessary skills and knowledge for the positions of team leaders, project managers, senior

managers. etc.

10. Evaluation

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Weight in

final grade

10.4 Course

Problem solving correctness Written exam 40%

Presentation of scientifically

papers

Oral evaluation 15% (extra)

10.5 Seminar

10.5

Laboratory/Project

Project development Project work during semester 20%

Project success Final project evaluation, normalized using

the team and personal marks

25%

10.7 Minimal standard of performance

• Minimum 50% of the marks from Seminaries Assignments and Course Activities part (3

points out of 6)

• Minimum of 50 % from final examination (2 points out of 4)

Agent-Oriented Software Engineering

1. Information about the program

1.1 Higher education institution University POLITEHNICA of Bucharest

1.2 Faculty Faculty of Engineering in Foreign Languages

1.3 Department Department of Engineering in Foreign Languages

1.4 Field of study Computers and Information Technology

1.5 Study cycle Master

1.6 Program / Qualification Software Engineering

2. Data about the subject

2.1 Name of subject Agent-Oriented Software Engineering

2.2 Course holder

2.3 Seminar holder

2.4 Laboratory/project holder

2.5 Year of study 6 2.6 Semester 2 2.7 Evaluation type E 2.8 Subject type DAP

3. Estimated time (hours per semester) of didactic activities

3.1 Number of hours per week 4 course hours 2 seminar 1 laboratory 1

3.2. Number of hours per semester 56 course hours 28 seminar 14 laboratory 14

3.3.Distribution of spend time: h.

Study of textbooks, bibliography and course notes

Supplementary study in library, on electronic platforms, on the fieldwork

Preparation of seminars/laboratories, home assignments, papers, portfolios, essays

Tutoring

Examinations

Other activities

3.4 Total hours of individual study 50

3.5 Total hours per semester 1 106

3.6 Number of credits 4

4. Preconditions (where relevant)

4.1 curriculum- related •

4.2 competence - related •

1 Numărul total de ore nu trebuie să depăşească valoarea (Număr credite) x 27 ore

5. Facilities and equipment (where relevant)

5.1 for the course •

5.2 for the course seminar •

5.3 for the laboratory/project •

6. Specific competences acquired

P
ro

fe
ss

io
n
al

 c
o

m
p

et
en

ce
s • Apply design and development methods and techniques as appropriate to realize solutions

along the whole life-cycle of the software product

T
ra

n
sv

er
sa

l
co

m
p
et

en
ce

s • Understand and be able to use specific tools, components, and frameworks and also abstract

elements such as algorithms and architectures

• Organize and lead development teams, including team-building and negotiation

• Serve as an agent of change for introducing new technology

7. Course objectives (as resulting from the grid of specific competences)

7.1 Subject general goal • Acquiring theoretical and practical knowledge about intelligent

agents and multi-agent systems

• Studying agent types and multi-agent types

• Presenting the reasoning methods for intelligent agents

• Presenting the distributed planning methods for MAS, the

coordination mechanisms and elements of agent oriented

programming
• Studying development methods for applications based on the

multi-agent paradigm

7.2 Specific objectives • Developing applications based on intelligent agents

• Abilities for the design and development of multi-agent systems

8. Content

8.1 Course Teaching methods Observations

Introduction

• Agents and Multi-Agent Systems
• Cognitive and Reactive Agent

Face to face teaching Bibliographic materials are used.

Architectures

• Languages and communication

protocols for MAS

Coordination
• Coordination in solving tasks

• Distributed planning in MAS

• Negotiating techniques and

protocols

Specific Applications

• Agent oriented programming

MAS Platforms
• Multi agent systems applications

Bibliography

• M. Wooldridge. An Introduction to Multiagent Systems. John Wiley and Sons, 2002.

• Bordini, Rafael H., Jomi Fred Hübner, and Michael Wooldridge. Programming multi-agent systems in

AgentSpeak using Jason. Vol. 8. John Wiley & Sons, 2007.

• G. Weiss (ed.). Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT

Press, 2000. . – disponibila in biblioteca Laboratorului AI-MAS

• L. Padgham, M. Winikoff . Developing Intelligent Agent Systems: A Practical Guide. Wiley Series in

Agent Technology, 2004. – disponibila in biblioteca Laboratorului AI-MAS

• F. L. Bellifemine, G. Caire, D. Greenwood. Developing Multi-Agent Systems with JADE, Wiley Series

in Agent Technology, 2007. – disponibila in biblioteca Laboratorului AI-MAS

• A. M. Florea. Sisteme multi-agent. Note de curs – format electronic, in curs de redactare pentru

publicare.

• A.M. Florea. Multi-agent Systems. Slides for the CS525 taught at Worchester Polytechnic Institute,

Massachusetts, USA

8.2 Seminar Teaching methods Observations

• Implementing a multi-agent

system using the BDI architecture
• Implementing the environment
for multi-agent systems

Face to face teaching

8.3 Laboratory

• programming agents using Jason
and Cartago programming languages

Face to face teaching

Bibliography

• M. Wooldridge. An Introduction to Multiagent Systems. John Wiley and Sons, 2002

• Bordini, Rafael H., Jomi Fred Hübner, and Michael Wooldridge. Programming multi-agent systems in

AgentSpeak using Jason. Vol. 8. John Wiley & Sons, 2007.

• G. Weiss (ed.). Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT

Press, 2000. . – disponibila in biblioteca Laboratorului AI-MAS

• L. Padgham, M. Winikoff . Developing Intelligent Agent Systems: A Practical Guide. Wiley Series in

Agent Technology, 2004. – disponibila in biblioteca Laboratorului AI-MAS

• F. L. Bellifemine, G. Caire, D. Greenwood. Developing Multi-Agent Systems with JADE, Wiley Series

in Agent Technology, 2007. – disponibila in biblioteca Laboratorului AI-MAS

• A. M. Florea. Sisteme multi-agent. Note de curs – format electronic, in curs de redactare pentru

publicare.

• A.M. Florea. Multi-agent Systems. Slides for the CS525 taught at Worchester Polytechnic Institute,

Massachusetts, USA

9. Subject’s relevance to the epistemic community, professional associations and representative

employers in fields significant for the program

10. Assessment

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Weight in

final grade

10.4 Course

The quality of the provided solution Written exam 20

The quality of the provided solution Written exam 60

10.5 Seminar
The quality of the provided solution Solutions evaluation 10

10.6
Laboratory/Project

Laboratory activity Oral evaluation 5

The quality of the provided solution Solutions evaluation 5

10.7 Minimal standard of performance

• Obtaining minimum 50% of the final exam

• Attending at least 5 laboratory sessions

•

Special Topics in Software Engineering

1. Information about the program

1.1 Higher education institution University POLITEHNICA of Bucharest

1.2 Faculty Faculty of Engineering in Foreign Languages

1.3 Department Department of Engineering in Foreign Languages

1.4 Field of study Computers and Information Technology

1.5 Study cycle Master

1.6 Program / Qualification Software Engineering

2. Data about the subject

2.1 Name of subject Special Topics in Software Engineering

2.2 Course holder

2.3 Seminar holder

2.4 Laboratory/project holder

2.5 Year of study 2 2.6 Semester 1 2.7 Evaluation type E 2.8 Subject type DO

3. Estimated time (hours per semester) of didactic activities

3.1 Number of hours per week 2 course hours 1 seminar laboratory 1

3.2. Number of hours per semester 28 course hours 14 seminar laboratory 14

3.3.Distribution of spend time: h.

Study of textbooks, bibliography and course notes 14

Supplementary study in library, on electronic platforms, on the fieldwork 10

Preparation of seminars/laboratories, home assignments, papers, portfolios, essays 14

Tutoring 2

Examinations 2

Other activities

3.4 Total hours of individual study 42

3.5 Total hours per semester 1 70

3.6 Number of credits 3

4. Preconditions (where relevant)

4.1 curriculum- related • Programming Languages, Computer Networks

4.2 competence - related •

5. Facilities and equipment (where relevant)

5.1 for the course • Projector, blackboard/whiteboard

5.2 for the course seminar •

5.3 for the laboratory/project • Laboratory with computers

• Internet connection

• Development boards with sensors and communication

1 Numărul total de ore nu trebuie să depăşească valoarea (Număr credite) x 27 ore

 capabilities

6. Specific competences acquired

P
ro

fe
ss

io
n

al
 c

o
m

p
et

en
ce

s
Design software solutions using responsible engineering aproaches. Apply theories and models in the

design process

T
ra

n
sv

er
sa

l
co

m
p

et
en

ce
s Understand and be able to use specific tools, components, and frameworks and also abstract elements

such as algorithms and architectures.

Organize and lead development teams, including team-building and negotiation

Serve as an agent of change for introducing new technology

7. Course objectives (as resulting from the grid of specific competences)

7.1 Subject general goal • Study the Internet of Things paradigm, using intelligent devices in

complex information systems

7.2 Specific objectives • Knowing the Internet of Things paradigm

• Learning specific protocols for machine-to-machine

communication

• Developing applications on development boards using sensors and

actuators
• Connecting smart devices to the Internet

8. Content

8.1 Course Teaching methods Observations

Introduction to IOT, Networks,

Taxonomy, Examples
Blackboard, projector,

Moodle

1

IOT systems architecture 1

Development boards, Capabilities,

Programming

2

Analog and digital sensors 1

Actuators 1

Serial communication protocols 1

Machine-to-machine communication in

wireless networks

1

Low-energy communication 1

Using cloud services 1

Connecting to smartphone applications 2

Digital signal processing on development

boards
2

Bibliography

8.2 Seminar Teaching methods Observations
 Moodle, individual work at

8.3 Laboratory computer

Programming Arduino (or similar)
development boards

2

Programming Raspberry Pi (or similar)
development boards

2

Reading digital and analog sensor data 2

Serial communication (SPI, I2C) 1

Bibliography

• „Collaborative Internet of Things (C-IoT): for Future Smart Connected Life and Business”, Fawzi

Behmann, Kwok Wu, ISBN: 978-1-118-91374-1, 2015

• The Internet of Things: Key Applications and Protocols, 2nd Edition, Olivier Hersent, David

Boswarthick, Omar Elloumi, ISBN: 978-1-119-99435-0, 2012

• „Professional Android Sensor Programming”, Greg Milette, Adam Stroud, ISBN: 978-1-118-18348-9,

2012

• „Raspberry Pi 3: Beginner to Pro – Step by Step Guide”, Timothy Short, 2016

• „Beginning Sensor Networks with Arduino and Raspberry Pi”, Charles Bell, ISBN-13: 978-1430258247,

2013

9. Subject’s relevance to the epistemic community, professional associations and representative

employers in fields significant for the program

10. Assessment

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Weight in

final grade

10.4 Course
Knowing the theory Written exam 40
Solving a programming task

10.5 Seminar

10.6
Laboratory/Project

Attendance + homework + activity Oral examination 30

Programming tests Written test during the laboratory 30

10.7 Minimal standard of performance

• Knowing basic theory (IOT architectures, fundamental protocols)

• Designing of IOT systems for satisfying requirements presented in natural language.

• The course and laboratory were prepared after extensive study of similar programs offered by prestigious

universities and adapted to be integrated in the current study program.

Software Testing

1. Information about the program

1.1 Higher education institution University POLITEHNICA of Bucharest

1.2 Faculty Faculty of Engineering in Foreign Languages

1.3 Department Department of Engineering in Foreign Languages

1.4 Field of study Computers and Information Technology

1.5 Study cycle Master

1.6 Program / Qualification Software Engineering

2. Data about the subject

2.1 Name of subject Software Testing

2.2 Course holder

2.3 Seminar holder

2.4 Laboratory/project holder

2.5 Year of study 1 2.6 Semester 1 2.7 Evaluation type C 2.8 Subject type DPA/DO

3. Estimated time (hours per semester) of didactic activities

3.1 Number of hours per week 3 course hours 2 seminar 0 laboratory 1

3.2. Number of hours per semester 42 course hours 14 seminar 0 laboratory 14

3.3.Distribution of spend time: h.

Study of textbooks, bibliography and course notes 20

Supplementary study in library, on electronic platforms, on the fieldwork 20

Preparation of seminars/laboratories, home assignments, papers, portfolios, essays 10

Tutoring 3

Examinations 3

Other activities

3.4 Total hours of individual study 66

3.5 Total hours per semester 1 108

3.6 Number of credits 4

4. Preconditions (where relevant)

4.1 curriculum- related • Introduction to Information Technology

• Data Structures and Algorithms

4.2 competence - related •

1 Numărul total de ore nu trebuie să depăşească valoarea (Număr credite) x 27 ore

5. Facilities and equipment (where relevant)

5.1 for the course • Overhead Projector

5.2 for the course seminar •

5.3 for the laboratory/project • 20 PC

6. Specific competences acquired

P
ro

fe
ss

io
n
al

 c
o
m

p
et

en
ce

s • Apply design and development methods and techniques as appropriate to realize solutions along the
whole life-cycle of the software product

 • Understand and be able to use specific tools, components, and frameworks and also abstract

elements such as algorithms and architectures

• Organize and lead development teams, including team-building and negotiation

• Serve as an agent of change for introducing new technology

7. Course objectives (as resulting from the grid of specific competences)

7.1 Subject general goal • Scientific foundations for software engineering depend on
the use of precise testing methodology for checking the
correctness of a software under test. This course aims to
bring the student the information regarding rigorous testing
starting with test planning, functional and non-functional
testing strategies, conformance standardisation testing,
automatic test generation, test reporting and debugging,
etc.

7.2 Specific objectives • How to use formal specification methods in software
development for checking the correctness of a specification

• How to develop test planning and do test reporting
• How to use different strategies for effective testing.

8. Content

Course Teaching methods Observations

• Background knowledge

• Use of probabilities in testing

• Design phases: Testing the

design – Formal methods

• Planning for testing

• Static testing: Audits,

Interviews

• Detailed Design and Coding,

Transfer and Maintanance

phases: Main Testing

Methodologies

• Non-functional Testing

• Automtic test derivation

• Standardisation testing

conformance

• Reporting the results

Lecturing

Bibliography

• Elaine A. Rich, Automata, Computability and Complexity: Theory and ApplicationsSep 28, 2007

• John E. Hopcroft and Rajeev Motwani, Introduction to Automata Theory, Languages, and
Computation, 2006

• “Programare Functionala, O perspectiva pragmatica”, C. Giumale, Editura tehnica, 1997

• “Z An Itroduction to Formal Methods”, A. Diller, John Wiley & Sons, 1994

• Rex Black. Pragmatic Software Testing: Becoming an Effective and Efficient Test

Professional. John Wiley & Sons, 2007.

• Rex Black. Testing Metrics. RBCS, 2012

Rex Black, et al. Foundations of Software Testing, 3rd Edition. Thomson Learning, 2011.

8.2 Seminar Teaching Method Observation

8.3 Laboratory

Introduction to Testing Laboratory Work

Testing the design with Prommela And
Spin

Laboratory Work

Elaboration of a testing Plan Laboratory Work

Testing plan implementation Laboratory Work

Reporting Testing results Laboratory Work

Bibliography

• Elaine A. Rich, Automata, Computability and Complexity: Theory and ApplicationsSep 28, 2007

• John E. Hopcroft and Rajeev Motwani, Introduction to Automata Theory, Languages, and
Computation, 2006

• “Programare Functionala, O perspectiva pragmatica”, C. Giumale, Editura tehnica, 1997

• “Z An Itroduction to Formal Methods”, A. Diller, John Wiley & Sons, 1994

• Rex Black. Pragmatic Software Testing: Becoming an Effective and Efficient Test

Professional. John Wiley & Sons, 2007.

• Rex Black. Testing Metrics. RBCS, 2012

• Rex Black, et al. Foundations of Software Testing, 3rd Edition. Thomson Learning, 2011.

9. Subject’s relevance to the epistemic community, professional associations and representative

employers in fields significant for the program

10. Assessment

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Weight in

final grade

10.4 Course
Course Presence and Activities Presence and Activities Evaluation 10%

Final Examinations Written Exam 40%

10.5 Seminar

10.6
Laboratory/Project

Laboratory Assignment Assignments Correction 50%

10.7 Minimal standard of performance

• Minimum 50% of the marks from Seminaries Assignments and Course Activities part (3 points out of 6)
• Minimum of 50 % from final examination (2 points out of 4)

• Testing is a key piece in the development of a correct software. It is estimated that between 50-80% of the
software development time goes in testing. Course helps students to acquire good testing skills such that
they will be able to cope well with testing activities as future engineers and managers.

